

#### **Transverse Cooling**



- Particle's momentum reduced, direction same
- Momentum added longitudinally
- Result: transverse momentum reduction, but no effect on longitudinal
- Multiple scattering: low beta function at absorber





#### **Emittance Exchange**



- Create dispersion: position depends on energy
- Wedge absorber: energy loss depends on position
- Result: energy spread reduced, but transverse beam size increased
- Effectively cool longitudinal by trading with coolable transverse





#### **Current Development: Rings**



- Properties of rings
  - Give dispersion from bends, allowing longitudinal cooling
  - Multiple passes through same components: lower cost
- Merit factor
  - ◆ Transmission times ratio of initial to final emittance (6-D)
  - ◆ Factor of increase of central density
  - ◆ Has a peak at some number of turns
    - **★** Particles constantly lost
    - **★** Emittance reaches equilibrium



### **Separated Function Rings Balbekov**



- Transverse cooling sections interleaved with emittance exchange
- Cylindrically symmetric focusing in bends

| Circumference | 36.963 m   |
|---------------|------------|
| Energy        | 250 MeV    |
| $Max B_z$     | 5.155 T    |
| RF Frequency  | 205.69 MHz |
| Gradient      | 15 MV/m    |





### **Separated Function Rings Solenoid Achromats**







# **Separated Function Rings Transverse Cooling Straights**











### **Separated Function Rings Performance**



|                             | Before | After |
|-----------------------------|--------|-------|
| $\epsilon_{\perp}$ (cm)     | 1.2    | 0.21  |
| $\epsilon_{\parallel}$ (cm) | 1.5    | 0.63  |
| $\epsilon_6  (\text{cm}^3)$ | 2.2    | 0.028 |
| $\epsilon_6/\epsilon_{60}$  | 1      | 79    |
| $N/N_0$ , no decay          | 1      | 0.71  |
| $N/N_0$ , inc. decay        | 1      | 0.48  |
| Merit                       | 1      | 38    |



• Nonlinear correlation added to injected beam: uniform  $v_z$  (remove transverse momentum)



# **Separated Function Rings Nonlinear Dispersion**



- Path length function of square of transverse momentum
- Dispersion gives transverse momentum dependence on energy



- Large energy spread in beam
- Parametric resonance  $(2\nu_s)$  with synchrotron oscillations



### **Separated Function Ring Remove Cell**



• Remove one RF/absorber section to make room for injection/extraction

|                                 | Before | After |
|---------------------------------|--------|-------|
| $\epsilon_x$ (cm)               | 1.2    | 0.23  |
| $\epsilon_y$ (cm)               | 1.2    | 0.34  |
| $\epsilon_{\parallel}$ (cm)     | 1.5    | 1.0   |
| $\epsilon_6$ (cm <sup>3</sup> ) | 2.2    | 0.12  |
| $\epsilon_6/\epsilon_{60}$      | 1      | 19    |
| $N/N_0$ , no decay              | 1      | 0.29  |
| $N/N_0$ , inc. decay            | 1      | 0.20  |
| Merit                           | 1      | 3.9   |



• Problem is longitudinal match: long section lost



# **Separated Function Ring Bunch Compressor**



• Goal: reduce extremely large initial longitudinal emittance

| Circumference | 67.317 m   |
|---------------|------------|
| Energy        | 220 MeV    |
| Bend field    | 1.238 T    |
| $Max B_z$     | 1.751 T    |
| RF Frequency  | 15.624 MHz |
| RF Gradient   | 4 MV/m     |





#### Sep. Fcn. Bunch Compressor Performance



|                                                               |        |       | 10.0        |                                                                  |
|---------------------------------------------------------------|--------|-------|-------------|------------------------------------------------------------------|
|                                                               |        |       |             | — ε <sub>x</sub> (cm)                                            |
|                                                               | Before | After |             | <mark>— ε<sub>y</sub> (cm) —<br/>— ε<sub>z</sub> (dm) — Ξ</mark> |
| $\epsilon_x$ (cm)                                             | 1.2    | 0.76  |             | $-\frac{\varepsilon_6}{1}$ (cm <sup>2</sup> dm)                  |
| $\epsilon_y$ (cm)                                             | 1.2    | 0.83  |             | Tr. w/o dec. Tr. with dec.                                       |
| $\epsilon_{\parallel}$ (cm)                                   | 43     | 3.1   | 1.0         |                                                                  |
| $\epsilon_{\parallel}$ (cm) $\epsilon_{6}$ (cm <sup>3</sup> ) | 63     | 2.0   |             |                                                                  |
| $N/N_0$ , no decay                                            | 1      | 0.77  |             |                                                                  |
| $N/N_0$ , inc. decay                                          | 1      | 0.26  |             |                                                                  |
| Merit                                                         | 1      | 8.6   |             |                                                                  |
|                                                               | 1      | 1     | 0.1 0 40 80 | 120 160                                                          |
|                                                               |        |       | Period num  |                                                                  |

• Lower performance: less absorber (less RF), higher beta function



#### Sep. Fcn. Bunch Compressor Performance, Empty Straight



• Straight removed for injection

|                             | Before | After |
|-----------------------------|--------|-------|
| $\epsilon_x$ (cm)           | 1.2    | 0.83  |
| $\epsilon_y$ (cm)           | 1.2    | 0.87  |
| $\epsilon_{\parallel}$ (cm) | 43     | 3.9   |
| $\epsilon_6  (\text{cm}^3)$ | 63     | 2.8   |
| $N/N_0$ , no decay          | 1      | 0.77  |
| $N/N_0$ , inc. decay        | 1      | 0.27  |
| Merit                       | 1      | 5.9   |
|                             | •      | •     |



• Lower RF frequency, effect less substantial



#### **Separated Function Other Comments**



- Long straights, several linear resonances over energy range
  - ◆ Large beam, synchrotron oscillations, nonlinearity wash out
- All simulations done with solenoid fields ending abruptly
  - Realistic fields will give nonlinearities
  - Cylindrical focusing symmetry will be broken
- ICOOL simulations show even better performance than Balbekov's
  - Merit factor 94



#### RFOFO Ring Palmer *et al*.



- Start with lattice cell from straight cooling channel
  - ◆ Compact
    - ★ High average accelerating gradient
    - **★** Large acceptance (solenoid lattice)
  - Already well optimized for cooling
- Modifications to give longitudinal cooling
  - ◆ Bend to generate dispersion
    - **★** Dispersion is never removed: dispersion in RF!
    - **★** Generate bend by tilting solenoid coils
    - **★** Breaks cylindrical symmetry of focusing
  - Put angles on faces of absorber
    - ★ Still thick: gives "transverse" cooling
    - ★ Gives longitudinal/transverse coupling due to dispersion and angle



## RFOFO Ring Parameters



| Circumference      | 33 m      |
|--------------------|-----------|
| Momentum           | 200 MeV/c |
| Bend Field         | 0.125 T   |
| Max Solenoid Field | 2.7 T     |
| RF Frequency       | 200 MHz   |
| RF Gradient        | 12 MV/m   |





#### RFOFO Ring Choice of Bend Field



- Acceptance depends strongly on bend field
- Prefer more bend: lower cost (smaller ring)
- Huge angular acceptance (0.37 rad!!!); needed for performance





#### RFOFO Ring Generating Bend Fields



• Alternating tilts of solenoids produce vertical field

• Not uniform, but close





#### **RFOFO Ring Lattice Functions**



- Low beta at absorber
- Maximum dispersion at absorber
- Dispersion rotates back and forth in alternating solenoid field
- Small asymmetry due to energy loss and gain in RF cavities and absorbers
  - Gives horizontal/vertical mixing







# RFOFO Ring Wedge Angle Optimization



- Maximize merit by varying wedge angle
- Most gain comes from improved longitudinal equilibrium emittance





## **RFOFO Ring Performance**



|                               | Before | After |
|-------------------------------|--------|-------|
| $\epsilon_{\perp}$ (mm)       | 10.7   | 2.3   |
| $\epsilon_{\parallel}$ (mm)   | 50.1   | 3.5   |
| $\epsilon_6  (\mathrm{cm}^3)$ | 5.787  | 0.019 |
| $\epsilon_6/\epsilon_{60}$    | 1      | 302   |
| $N/N_0$ , inc. decay          | 1      | 0.54  |
| Merit                         | 1      | 162   |





# RFOFO Ring Performance with Kicker Gap



|                               | Before | After |
|-------------------------------|--------|-------|
| $\epsilon_{\perp}$ (mm)       | 10.7   | 2.3   |
| $\epsilon_{\parallel}$ (mm)   | 50.1   | 6.5   |
| $\epsilon_6  (\mathrm{cm}^3)$ | 5.787  | 0.035 |
| $\epsilon_6/\epsilon_{60}$    | 1      | 165.7 |
| $N/N_0$ , inc. decay          | 1      | 0.39  |
| Merit                         | 1      | 64    |

- Problem: longitudinal match
- More losses also (related)





## Quadrupole Ring Garren, Kirk



#### Motivation

- ◆ Easier to design lattice (dispersion suppression, etc.)
- More experience than with solenoids
- ◆ Injection and extraction potentially easier
- Thick wedge: both cooling and longitudinal/transverse coupling

| Circumference          | 165 m     |
|------------------------|-----------|
| Momentum               | 500 MeV/c |
| Magnet length          | 20 cm     |
| Magnet aperture (full) | 40 cm     |
| Space between magnets  | 25 cm     |
| Max pole tip field     | 4.2 T     |
| RF Frequency           | 200 MHz   |
| RF Gradient            | 8 MV/m    |





## **Quadrupole Ring Wedge Angle Optimization**



- Admittance: emittance of the largest beam that can be transmitted in lattice
- Vary wedge angle to maximize ratio of admittance to equilibrium emittance





### **Quadrupole Ring Performance**



|                                 | Before | After |
|---------------------------------|--------|-------|
| $\epsilon_x$ (mm)               | 5.76   | 3.64  |
| $\epsilon_y$ (mm)               | 3.31   | 1.43  |
| $\epsilon_{\parallel}$ (mm)     | 24.8   | 9.8   |
| $\epsilon_6^{"}  (\text{mm}^3)$ | 473    | 51.0  |
| $\epsilon_6/\epsilon_{60}$      | 1      | 9.27  |
| $N/N_0$ , no decay              | 1      | 0.64  |
| $N/N_0$ , inc. decay            | 1      | 0.42  |
| Merit                           | 1      | 3.9   |



- Limited acceptance
- ◆ Low real-estate gradient
- Equilibrium emittance similar to other systems







#### **General Problems Foils and Windows**



- Multiple scattering in windows and foils reduces performance
  - ◆ Higher Z materials
  - Generally at higher beta functions
- Example: system with merit 92, windows on hydrogen container
  - ◆ Conventional Al windows, 0.5 mm: merit 31
  - ◆ Very thin Al windows, 0.125 mm: merit 61
    - **★** Need to redesign containment
- Example: vary thickness of Be RF windows
  - ◆ Poor performance for conventional thickness
  - Thin windows not so bad
    - ★ Possible at liquid nitrogen temperature
  - Eliminate windows
    - **★** Loss of RF gradient





# **General Problems Injection/Extraction**



- Difficulty leaving space for kicker: longitudinal matching
- Extreme kicker requirements

|                   | $\mu$ Ring | CERN $\bar{p}$ |
|-------------------|------------|----------------|
| $B \cdot L$ (T-m) | 0.30       | 0.088          |
| Length (m)        | 1          | 5              |
| Field (T)         | 0.3        | 0.018          |
| Rise time (ns)    | 50         | 90             |
| x aperture (cm)   | 42         | 8              |
| y aperture (cm)   | 63         | 25             |
| Voltage (kV)      | 3970       | 800            |
| Stored energy (J) | 10,450     | 13             |

- Far beyond state of the art for kickers
- Similar to induction linac; borrow techniques from there



#### Injection/Extraction Kicker Magnet





- Drive and subdivide flux return (reduce voltage)
- Conducting box removes stray field return
- Can remove ferrite ( $\cos \theta$  configuration): double stored energy, current, same voltage
  - No limitation on rise time



## Injection/Extraction Magamp Supply



- Non-resonant system
  - ◆ Need separate drivers for injection and extraction
  - ◆ Example, need 48 magamps (about \$20 M?)
- Resonant
  - Both injection and extraction
    - **★** Pulses in opposite direction
    - **★** Could add switch in low-current section of magamp
      - > Also allows lengthening pulse separation
  - ◆ More efficient (twice?)
  - ◆ Same example, only 12 magamps



#### **Cooling Quality Definition**



• Define quality as

$$Q = \frac{d\epsilon_6}{dN} \frac{N}{\epsilon_6}$$

◆ Constant *Q* 

$$\frac{N}{N_0} = \left(\frac{\epsilon_6}{\epsilon_{60}}\right)^{1/Q}$$

• Collider parameters:  $\epsilon_6$  reduced by  $10^6$ , only half of particles lost: Q=20



# **Cooling Quality Evolution in Ring**



- Initially: scraping/dynamic losses and mismatch, low Q
- As approach equilibrium emittance cooling rate decreases, low Q
- When losses are only from decays and far from equilibrium, peak Q
- Need peak far above desired value to get average desired
- Could maintain peak by tapering system, but no longer ring: expensive!





## Cooling Quality Theoretical Approximation



- Assume far from equilibrium emittance
- Ignore contribution from longitudinal growth in absorbers (small error)

$$Q \approx \frac{2c\tau}{\beta mc^2} \frac{\Delta E}{L}$$

- $\Delta E$  is energy gained in length L
- Only two parts lattice dependent
  - Velocity  $(\beta)$ , but very weak dependence
  - $\Delta E/L$ : average real-estate energy gain/loss
    - \* Energy lost must be restored by RF:  $V \cos \phi/L$
    - ★ More RF gradient will improve Q
    - \* Also, being closer to crest will improve
- ullet To approximate approach to equilibrium, multiply by  $(\epsilon_6^{1/3} \epsilon_{6, \rm eq}^{1/3})/\epsilon_6^{1/3}$



## Theoretical Development Kim, Wang



- Linear theories for 6D cooling developed for
  - Quadrupole lattices
  - Solenoid lattices, requiring cylindrically symmetric linear focusing in bends
    - **★** Equations for dispersion in both planes
    - ★ 5 invariants in this system!
  - Assumes dispersion removed in RF cavities
- Include damping and stochastic effects
  - Predict equilibrium emittances